VK06TL集成电路有很多功能,这些功能通常需要用大量组件来实现。例如预热电路、荧光灯管使用到最后阶段的保护电路、热保护、双向击穿二极管功能。由于器件本身的运作模式,在荧光灯管使用到最后阶段时能够限制流过电路的大电流,该功能通过在外面增加一个简单便宜的电阻器-二极管电路实现。该器件的工作频率可以用外面的两只电容器来设定。器件中的保护电路提高了器件本身的可靠性以及整个系统的可靠性。
在晶体管导通阶段,有可能利用存储在晶体管结中的电荷,因此,Vdd电源电路可以用一个消耗电流很小的外部RC网络来实现。
引言
VK06TL采用SO-16封装。其特别之处是,它用8个引出脚接到功率晶体管的集电极,以便增大电流和功率的额定值。当器件安装在标准的单面FR-4电路板上,焊盘面积为50mm2时,这种特殊的外壳可以让器件的集电极电流有效值维持在0.5A。
技术简介
VK06TL是用意法半导体的 VIPower M3-3 智能大功率技术制造的。利用这项技术,可以把控制级和功率级集成在同一块芯片上。
大功率级是一个"发射极开关"。"发射极开关"是用一只高电压的达灵顿晶体管与一只低电压MOSFET串接起来的电路。因此,它具备双极晶体管的低压降及关断状态时高击穿电压的优点,也有MOSFET切换速度高的长处。
在关断期间,双极晶体管级处在共基状态,基极电流为负,它把存储在双极晶体管基区上的电荷移走,这个基极电流基本上是集电极电流。正因为如此,用"发射极开关"电路可以达到的频率很高
(大约为200kHz)。
由于这个原因,两级的级联方案可以做到的切换性能很好,远优于双极晶体管,与一只MOSFET的切换性能相当。因此,这种器件基本不存在电荷储存问题。
M3-3技术的控制部分是用BCD (Bipolar-Cmos-Dmos) 技术实现的。
VK06TL的方块图
图2是VK06TL的原理图。这个器件有七个引脚用于控制和接到电源,其它的引脚是作为源极及集电极的引出端。 下面详细介绍用于控制的引脚。
Vdd 引出脚
该器件由Vdd引出脚供给电源,上面接一只电容器。在工作开始时,该电容器通过一个RC网络充电。参看图3,选择RC网络的时间常数RC的数值,以确保主电源电压最低时的供电电压为5V。由于功率级是发射极切换的电路,利用一只内部的二极管,有可能在关断期间回收存储在双极晶体管基区的电荷。因此
由于回收储存的电荷,Vdd 供电电容器处于充电状态。在Vdd供电容器上的电压在内部箝制在7V。
Diac引出脚
Diac引出脚有两个作用:第一是启动振荡;第二是将预热定时器复位。
1) 振荡的启动。
当diac引出脚上的电压达到30V时,低压端器件切换为导通状态。接着,diac电容器上的电压通过一只内部的二极管(接在该引出脚与器件的集电极之间)维持为低电压。
2) 预热定时器的复位。
为了确保荧光灯在预热之后才启动,每当diac引出脚上的电压达到18V时,预热定时器电容器便开始放电。
Sec 引出脚
当sec引出脚上的电压达到2.2V时,内部的施密特触发器把器件切换为导通状态;当sec引出脚上电压下降到0.8V时,便把器件切换到关断状态。
Cap 1 Cap 2及 Cappreh引出脚
通过Cap 1和Cap 2引出脚上的电容器,可以设定预热频率和稳态频率。内部的电流产生器 (I≈350 A)对这些电容器充电;当这两个引出脚上的电压达到内部的一个固定的阈值时,功率级切换为关断(见图
4)。
在启动过程中,只有Cap1引出脚是接上的,用来固定预热频率。这个状态一直维持到Cappreh引出脚上的电压低于4.2V。当Cappreh引出脚上的电压低于4.2V时,通过一只内部的开关把引出脚Cap2与引出脚Cap1并联起来,迫使器件工作在稳态频率。每当diac引出脚上的电压达到18V时,通过一只在内部的比较器对Cappreh引出脚放电,于是预热定时器便复位。
CapEOL 引出脚
当荧光灯使用到最后阶段时,镇流器也许会让荧光灯继续工作,引起基极材料过热,并且产生烟雾,在荧光灯管的阴极上产生很高的电压。但是,更换荧光管的操作人员要冒着危险去更换荧光灯管。所以,在荧光灯管镇流器上总是具备EOL
(End Of Life) 保护功能的。
在VK06TL中,把一只外接电容器接到CapEOL引出脚上,从而实现EOL保护。 在图5是EOL保护电路的详细电路图。
在器件中的电阻器Rsense检测出电路中的最大峰值电流。当Rsense上的电压超过 0.1 V (I≈1.8A时,内部的一只比较器将T1关断,并对CapEOL进行充电。当CapEOL引出脚上的电压达到4.2V时,把电源切断,同时diac引出脚接到地,于是避免电路重新启动。与此同时,启动一只电流产生器
(T2 关断) 维持充电了的电容器电压,于是器件处于栓锁状态。
在芯片上有一个热保护电路。当半导体结的温度超过150 C时,它把器件切换为关断状态。热保护电路是通过EOL网络起作用的 (见图
5)。
VK06TL的应用简介
图6是演示板的电路图,其中使用一只58W的荧光灯。
下面介绍演示板上各个部份电路的工作原理,实际应用的结果,以及有关的波形。
Vdd 部份电路
参看图6, Vdd电源电路是用R1-C1及R5-C5实现的。在启动时,通过R1和R5分别对C1和C5 充电,为器件提供静态工作电流。因此,在电容器C1和C5上的电源电压达到最低数值。
R1是通过灯管的阴极接到直流电线上,以便在更换荧光灯后,实现电路的自动启动。
Diac 部份电路
diac信号以不同方式送到高压端和低压端器件。 在高压端器件中,只有执行复位的功能。下面为高压端和低压端器件的工作过程。
低压端器件:在启动时C2 是通过R2充电的。当diac引出脚上的电压达到30V时,低压端器件切换为导通状态,振荡便开始。在几个周期之后,里面有一只二极管保持将C2的电压接地(图7)。时间常数R2C2的数值必须这样选择:当Vdd引出脚上的电压高于5V(主电源的最低电压)时,可以让电容器C2上的电压达到高于30V。
高压端器件:相对于低压端diac电路,有一只20V的齐纳二极管,以防止diac触发它们同时导通。时间常数R6C6的数值必须让电容器C6的电压达到20V,然后才开始振荡,以确保预热定时器复位(图8)。
Sec部份
通过扼流圈上的两个副边绕组(它们接到sec引出脚上),有可能将器件切换为导通或者关断。当sec引出脚上的电压超过2.2V时,器件切换为导通状态;当sec引出脚上的电压降低到低于0.8V时,切换到关断状态。中间滤波器(R3-C3、
R4-C4)是为了保证正确的工作状态(在导通时,sec引出脚上的电压总是高于 0.8 V ),这个滤波器的作用也是为了避免工作在硬切换的状态,并将导通状态阈值推迟。必须在dv/dt成为负的,并且在续流时间结束之前达到导通阈值。
Cap1 、Cap2和Cappreh部份
从引出脚Cap1,通过外接电容器,可以在预热阶段设定频率。两只器件都用同样的数值,这样系统将工作在占空比为50%。选择T1 =
0.8mH、C16 = 8.2nF、 C7 = C9 = 820 pF,那么预热频率是53 kHz(见图11中的A点),在电压为直流300V时,峰值电流为1A(见图10)。
当Cappreh (C11 = C12)上的电压达到4.2 V (预热阶段结束), C8、C10与C7、C9并联,为电路点燃荧光灯作好准备
。由于固定的谐振频率由C9//C10和C8//C9来决定,谐振频率高于稳态频率,两个副边线圈将推动器件工作在导通或者关断的状态,工作频率将按照谐振曲线移动(图11)。一旦电流流过C16,荧光灯便点燃,工作频率就变成稳态频率(见图11中点C)。
把C8 = C10 = 820 pF接到 Cap2引出脚时,稳态频率为37 kHz,器件的峰值电流为750 mA (在电压为直流400V时,图12)。在C11
= C12 = 4.7 ?F时,预热时间大约是1秒(图13)。
CapEOL和最大电流保护电路
为了完成EOL保护功能所需要的外部电路只是加在低压端电路。高压端EOL引出脚必须接到中点。电容器 C13把EOL保护时间固定住。取C13
= 470 nF,EOL保护时间大约是100 ms(预热阶段结束时,EOL保护功能便开始起作用)。
在荧光灯使用到最后阶段时,在电路中有很大的电流通过;如果必要,可以在外面接一个D1-D2- R7电路来限制这个大电流(图6)。在图14中是一个典型的EOL波形。请注意,在预热阶段之后,电流增大到
2.8 A,在100 ms之后,EOL保护电路让振荡停下来。
结论
在本文中介绍了意法半导体公司发明的推动荧光灯的一种解决方案,其中使用自激振荡半桥电路。
在单片系统方案中己经把控制电路、保护电路以功率级都集成在同一块硅片上。使用单片器件,提高了整个系统的可靠性,同时大多数用于荧光灯的有关电子电路的尺寸也都缩小了。
|